
W E A K  D I S C O N T I N U I T I E S  

M A G N E T I Z E D  L I Q U I D  

N.  F .  P a t s e g o n  

IN  AN E LECTR'ICALLY C O N D U C T I N G  

UDC 538.3: 538.4 

1. We will d i scuss  the propagat ion  of weak discontinui t ies  in a conducting magnet ized  liquid. The liquid 
is a s sumed  to be i ncom pres s i b l e  (p = const) ,  ideal (d iss ipat ive  fo rces  a r e  absent) ,  and nonuniformly and i so-  
t rop ica l ly  magnet ized  accord ing  to the a r b i t r a r y  law # = #(p, T, H ) ,  so  that  the magnet ic  induction B and the 
s t rength  of the magnet ic  field H a r e  re la ted  by the equation 

B = ~(p, r ,  H)H. (1.1) 

The dependence, of the magne t ic  pe rmeab i l i t y  # on the densi ty  p and t e m p e r a t u r e  T pe rmi t s  faking into 
account  magne tos t r i c t i ve  and magne toca lo r i c  effects  in a magnet ized liquid. Equation (1.1) has been adopted 
in connection with the invest igat ion of the flows of liquid dia-  and pa ramagne t i e  meta ls  [1] and e l ec t r i ca l ly  con-  
ducting f e r romagne t i c  liquids [2], in which it  is poss ib l e  to neglect  the phenomena assoc ia ted  with h y s t e r e s i s  
of magnet izat ion.  

The s y s t e m  of equations which desc r ibes  the nonsteady motions of such a liquid in the mague tohydro-  
dynamic  approx imat ion  is of the f o r m  [3] 

(s  +s ' )  = o, a.2) d i v v = 0 ,  d i v B = 0 ,  

dv p-jy --V(p--}-*)-b ~--~-rotIt• OB = ~/- = rot [v • B]. 

H e r e  v is the fluid veloci ty ,  M = {~--l)I-I/(4~) is the magnet iza t ion  intensity,  

H (1.3) 

,=~([z--i--pt~o)HdH, S' ! 1" = ~-~ ~HdI t ,  
�9 0 0 

and np, UT... denote the pa r t i a l  de r iva t ives  of the funct ion  u with r e s p e c t  to p and T, r e spec t i ve ly ,  with the other 
p a r a m e t e r s  constant .  

The ent ropy S and t e m p e r a t u r e  T of the liquid sa t i s fy  the equation T = T(S) [4] in the absence  of an e l ec -  
t r  omaguetic  field. 

The discontinui ty of the f i r s t  de r iva t ives  of the a r b i t r a r y  function u upon pass ing  through the su r f ace  
~(x,  y, z, t) = 0 of a v~ak discont inui ty  is de te rmined  by a s ingle  function A u [5], so  that  

<VU> = ~un, <Ou/Ot> = --~,uG, (1.4) 

where  n is the unit n o r m a l  vec to r  to the su r f ace  ~(x,  y, z,  t) = 0 and G=--n Vlwl" is the propagat ion  

ve loc i ty  of the discontinuity;  the angular  b racke t s  denote a discontinui ty of the quantity contained within them 
upon pass ing  through the discontinuity su r face .  

Using (1.4), we obtain f r o m  (1.2) the dynamic conditions at weak discontinui t ies  
(gDn) = 0, (gBn) = 0, 0 (s @ s = 0, (1.5) 

B pO~ = (~p -{- ~ )  n + - ~  X (n X ~B) - -  M~,Hn, 

~,B 0 + ~ .  = O, 
where  0 = G - v n is the no rma l  component  of the ve loc i ty  of an e l emen t  of the discontinuity with r e s p e c t  to the 
medium,  v n = (vn), B n = (Bn), ~ = Xvxi +Xvyj+Xvzk, andi ,  j ,  and k a r e  the unit vec to r s  of the c a r t e s i a n  c o o r -  
dinate s y s t e m  x, y, and z. 

We have in addition 
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kse= S~2~T + FT H~B/( 4ap), 
s = (~(~aB)/B --  ~Ti~$B)/(~ 2 + ~HB), 

~B ~H (~BB) B ~T~T B (1.6) 

from Eqs. (I.i), (1.3), and the equation of state. 

We will represent each of the vectors in the form v = VT+Vnn, where v~ is the projection of the vector v 
onto the plane tangent to the discontinuity surface. Taking account of the fact that Iv~ = Xv-2Wnn and using 
Eqs. (1.6), we transform the system of equations (1.5) to the form 

~,,. = O, ~,~,, = O; ( 1 . 7 )  

~p ---~ --;Lr (B~H)/(4~) -5 B.(~,n n)/(4n) + Ml.; (1.8) 

Br,,ko.~ = - -  0~,B,~; (t  .9) 

P0~'vv= --  ~ - ,  - '~---  p,~+p,~B I*B V)+I~HB / '  (1.10) 

= + N = - - ' .  ( 1 . 1 1 )  

It follows f rom Eqs. (1.7) that the der ivat ives  of the normal  components of the veloci ty  and r~gne t i c  field 
induction a re  continuous on the cha rac te r i s t i c ,  so that the discontinuity can undergo only der ivat ives  of the tan- 
gential components of the veloci ty  and induction. Equation (1.8) de termines  the intensi ty of the discontinuity of 
the p r e s s u r e  der iva t ives .  The sys t em of homogeneous equations (1.9)-(1.11) se rves  to de te rmine  AS, )~v~, VBr. 
We obtain f rom the exis tence  condition of nontr ivial  solutions of this sys tem an equation which de termines  the 
poss ible  veloci t ies  0 of weak discontinuities in a conducting magnetized liquid: 

0(02 - B~ ) 2 ~ 2 ~ 2 :4=p~ [02 -- mB~ ( ~  + ~uB~/B) - - N ~  ~TTsm B,B~]=0. (1.12) 

Thus the following types of weak discontinuities ex i s t  in an e lec t r ica l ly  conducting, incompress ib le ,  mag-  
netized liquid: 

magnetohydr odynamic (A lfv~n) 

magnetos onic 

and entr opic 

O~A mB ~ ," 

O~ = mB2n [~ 2 + UHB2n/B + N~t2F~.TsmB~]; 

0 s = 0. 

(1.13) 

(1.14) 

(1.15) 

Thus magnetos t r ic t ive  effects in an incompress ib le  liquid affect  only the intensity of the p r e s s u r e  d is -  
continuity. If ~ = ~(p) = const ,  only Alfv~n and entropic discontinuities a re  possible  in an e l ec t r i ca l ly  conducting 
liquid, so that  a magnetosouie discontinuity is exhibited in an isot ropical ly  magnetized liquid exclus ively  due to 
nonuniformity of the magnetizat ion law. 

The possibi l i ty  of plane magnetosonic waves of infinitely smal l  amplitude in a conducting magnetized 
liquid was f i r s t  pointed out in [6]. 

We obtain f rom (1.13) and (1.14) that the propagat ion ve loc i ty  of a magnetosonic discontinuity is equal to 
the Alfv~n veloci ty  only in the cases  in which the magnetic induction vector  is orthogonat to a discontinuity 
e lement  (By = 0), tangent to it  (B n = 0), or for  pa rame te r  values for  which 

V2F~TsmB = ~tR [~ + S~TTs -- ,u~TsmB2]. (1.16) 

In the la t ter  ca se  the magnetosonic veloci ty  coincides with the Alfv~n veloci ty  for  an a r b i t r a r y  orientat ion 
of the discontinuity e lements  re la t ive  to the field. We note that  this case  is impossible  if the dependence of the 
magnetic permeabi l i ty  only on the t empera tu re  or only on the magnetic field intensi ty is taken into account.  

We will de te rmine  the quantit ies Xi (i = p, T, ...) in each type of discontinuity. F r o m  (1.9) and (1.10) we 
have 
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[0 ~ - -  ( ~  + v.nB~/B) mB~ ] (~.~ I~) = -- I~,rsrnB~BI~.s, 
and Eq. (1.11) is reduced to the f o r m  

O (0 2 - -  O~) [O ~ - -  m B ~  ( :  + ~ e ~ / B ) ] - ~ s  = O. 

F r o m  t.his ~ = 0 follows for a magnetohydrodynamic  discontinui ty (0 = Oh,), so  that  h T =  0. 
we have  

"ko~ = LBn = L~r = ~se = L~ = ( ~ B )  ~ ( ~ B )  = 0, 

:t: ~ B~- 

F r o m  (1.6)-(1.9) 

Only the tangential  components  of the veloci ty ,  induction, and magnet ic  field intensi ty a r e  a l t e red  in 
magnetohydr  "dynamic  d iscont inui t ies .  

The p r o p e r t i e s  of magnet0sonic  discontinuit ies  depend s ignif icant ly  on taking the magne toca lor ic  effect  
in liquids into account .  F i r s t  we will consider  the c a s e  in which # T  = 0. Such magnet iza t ion  laws occur  in 
pa r t i cu l a r  in d iamagnet ic  liquids and in a pa ramagne t i c  liquid in s t rong  fields when the magnet iza t ion  is c lose  
to s a t u r a t i o n .  

For  this case  S e -- 0, and we obtain ~S = 0 f r o m  (1.11) and 

x .  -- 0, ~,  - -  - ( ~ , )  ~ p  [~ - p ~  + ~BB'~/(~B)], (Z.17} 

f r o m  (1.6-(1.8). 

Consequent ly,  the der iva t ives  of the rmodynamic  p a r a m e t e r s  a r e  continuous. 

For  the case  # T  ~ Owe obtain f r o m  (1.6}-(1.11) (1'18) 

z .  -- r8~8, ~ -~ - x8 (t + s ~ r s ) / ( ~ '  + ~ B )  ~ B ,  

"~,S ~p ~ {-- ~rrs.~r + p (t + S~rs)[(2 -- p~p) ~ + ~aB~/B]-- p~4rsraB~ (1~ 2 + ~B)} ,  

B kB~. 

The der iva t ives  of the rmodynamic  p a r a m e t e r s  undergo discontinuit ies  in connection with taking the mag-  
ne tocalor ic  e f fec t  in weak discontinuit ies  into account.  I t  follows f r o m  (1.17) and (1.18) that the discontinuit ies  
of the de r iva t ives  of the tangential  components  of the ve loc i ty  and induction lie in a plane which passes  through 
n and B~-. Thus in con t r a s t  to the Alfv4n discontinuit ies  the magnetosonic  discontinuit ies  a r e  plane polar ized.  

Now let  an e l emen t  of a magnetosonic  discontinuity move with the Alfv~a veloci ty .  Then if B r ~ 0, we 
obtain the s a m e  re la t ionships  f o r  the discontinui t ies  of the de r iva t ives  as for magnetohydrodynamic  discon-  
t inuit ies .  If t3 n = 0 or if condition (1.16) is sa t i s f ied ,  the discontinuit ies  of the der iva t ives  of the magneto-  
hydrodynamic  p a r a m e t e r s  a r e  a r b i t r a r y  in genera l .  

It follows f r o m  Eq. (1 .9 ) fo ran  entropic  discontinui ty (0 = 0) that  )~vrB n = 0. If B n ~ 0, then hvr  = 0. 
Thereby  we have f r o m  (1.10) 

~,~, = IxlxrTsBB~,s/(~x2B + Ix~B~), 

x , ,  = - ~TsB'.Z~/(.'~ + ,~B~), 

In this c a s e  the der iva t ives  of the ve loc i ty  on the entropic  discontinuity a r e  continuous. If PT = 0, only the t e m -  
p e r a t u r e  and ent ropy undergo a discont inui ty  a t  an entropic  discontinuity.  

If B n = 0, then ~ : r ,  hBr  and k S a r e  a r b i t r a r y ,  and 2tp and ~tH a re  de te rmined  f r o m  Eqs .  (1.6) and (1.8). 

2. Let  us inves t igate  the quest ion of the propaga t ion  of weak discontinuit ies  in a conducting magnet ized 
liquid. 
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The magnet iza t ion  M of pa ramagne t i c  liquids is de te rmined  by I .angevin 's  fo rmula  [1]: 

M = MoL(~), L(~) = cth ~ - -  ~-1, ~ = raol'I/kT, (2.1) 

where  m 0 is the magnet ic  m om en t  of the molecu le ,  k is BoltzmannWs constant ,  and M 0 = const .  

Equation (2.1) is adopted for  f e r romagne t i c  liquids [7]; in this case  m 0 is the magnet ic  momen t  of s ingle-  
domain  pa r t i c l e s  of a d i spe r sed  f e r romagne t .  

Equation (1.16) has the f o r m  

f(~) = ~(~ cth ~ - -  i ) ( i  - -  Cg/sh~r ~- r cth r q- r162 - -  2 = O, 

= MokTs/mopT 

in the ca se  of Langevin~s law. 

For  values  0 < ~ <~  this equation has  no solut ions,  and the function f(~) is posi t ive .  Thus 0~i_> 0~ in a 
pa r amagne t i c  liquid. 

For  the case  ~ = #(H) we have f r o m  (1.12) 

e_h = i - (2.2)  
e l  .? + 

The known magnet iza t ion  laws,  as well  as the kinetic r ep r e sen t a t i ons  on the nature  of the m a g n e t i z a t i o n  
of d ia-  and pa ramagne t i c  subs tances  [1] p e r m i t  a s suming  that for the magnet iza t ion  M(H) in a p a r a m a g n e t i c  
subs tance  dM/dH > 0 and d2M/dH2- < 0 and in a d iamagnet ic  subs tance  dM/dH < 0 and d2M/dH2_ > 0. Then we have 
for  the magnet ic  pe rmeab i l i t y  [8] 

0 ~ ~t, ~ (i - -  ~t)lH( F < i), (i - -  F)III  ~ ~ ,  ~ 0 (~ ~> i). (2.3) 

The re fo re  it follows f r o m  (2.2) that  in a pa ramagne t i c  liquid the ve loc i ty  of magnetosonic  discontinuit ies is 
g r e a t e r  than the Alfv4n veloci ty ,  and in d iamagnet ic  liquids it is always less  (with the exception of discontinuity 
e lements  for  which B n = 0 or BT = 0). 

We will r e p r e s e n t  the ve loc i ty  of magnetosonic  discontinuit ies  in the f o r m  

B ~ = al + bl(i - -  I), a = B=/4npF, l ~ cos ~ O, cos ~ ~ B , / B .  (2.4) 

In a p a r a n ~ g n e t i c  liquid 

b.= rnB = ( N ~ = ~ r s r a B  ~ - -  ~ B ) ,  

and one can  a s s u m e  b> 0 by v i r tue  of what has been se t  for th above.  

In a d iamagnet ic  liquid 
b --~ - -  ~HB3 ~ O, 

with a + b >  0. 

The genera l  a p p e a r a n c e  of the phase -ve loc i t y  d i ag rams  is i l lus t ra ted  in Figs .  1 and 2, where  ZA and I M 
denote the 0(~0) cu rves  for  magnetohydrodynamic  and magnetosonic  discont inui t ies ,  r e s p e c t i v e l y  (one-fourth of 
the d i ag rams  a r e  given). The phase -ve loc i ty  d i ag rams  in a liquid magnet ized accord ing  to an a r b i t r a r y  law ~-- 
~(p ,  T, H) have the s a m e  appea rance  if one excludes f r o m  the d i scuss ion  the degenera te  case ,  in which Eq. 
(1.16) is sa t i s f ied .  In the la t te r  case  the cu rves  lA and lM coincide.  

Let  the s ta te  of the liquid be cha r ac t e r i z ed  by the p a r a m e t e r  values  
v(r, t) = 0, B(r, t) = const, T(r, t) = coast, p(r, t) = coast, 

r = x i - ~ y ]  q-zk. 

8 B 
Fig. 1 Fig. 2 
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Fig.  3 

L M 

Fig.  4 

Using the r e s u l t s  of Ref.  9, we obtain that each e l emen t  of the discontinuity su r f ace  moves  through the liquid a t  
cons tant  ve loc i ty  without ro ta t ing.  The ve loc i ty  component  no rma l  to the discontinui ty e lement  coincides with 
one of the ve loc i t ies  0 (see  (1.12)). If the s u r f a c e  of a weak discontinuity is specif ied a t  the init ial  ins tant  of 
t ime  to, then a t  t ime  t = to+ 1 i t  is an enveloping plane of the tangents to the initial discontinuity su r f ace  fi0 
shifted by a d i s tance  0 in the d i rec t ion  of the no rma l s  to ~0. 

The in te r sec t ion  of the discontinui ty s u r f a c e  with the plane pass ing  through B at  t ime  to+ 1 is i l lus t ra ted  
in Figs .  3 and 4 for  an  initial  discontinuity s u r f ace  fi0 concent ra ted  near  the origin of coordinates  and contain-  
ing e v e r y  kind of or iented e l ement s .  The L M cu rves  denote the c r o s s  sec t ions  of the su r f aces  of magnetosonic  
discont inui t ies .  The points L A denote Alfv~n discont inui t ies .  The entropie  discontinui ty coincides with the c u r -  
r e n t  su r f ace  and is i l lus t ra ted  by the point  0 in the d i a g r a m s .  

The su r f aces  of weak discontinui t ies  a r e  specif ied in this ca se  by the p a r a m e t r i c  equations [10] 

(the or igin  of the c a r t e s i a n  coordinate  s y s t e m  (X, Y) coincides  with the discontinuity su r f ace  a t  the initial 
ins tant  of t ime ,  and the X axis  is d i rec ted  along the vec to r  B). With the use  of(2.4), Eqs .  (2.5) a r e  reduced to 
the f o r m  

a + b (i -- t) ~ bZ~/~]/{"L-T 
X -~ ]/a + ~ (i -- Z) Y ---- (2.6) 

' g ~ +  b (~ - 0 

for  magnetosonic  discont inui t ies .  

E l e m e n t a r y  invest igat ions show that  the cu rves  (2.6) depict  two curv i l inea r  t r iangles  whose tips a r e  
cuspida l  points ,  and the convexity of these  t r i ang les  is d i rec ted  towards  the inside of the r eg ion  bounded by 
them.  In a pa r amagne t i c  liquid these  t r i ang les  a r e  d i rec ted  with the t aper  away f r o m  the or igin of coordina tes  
(Fig. 4) and in the d iamagnet ic  ca se  - towards  the origin of coordinates  (Fig. 3). The tips of the t r iangles  a r e  
de te rmined  by  the equations 

l = 0 ,  l =  (3b ~ 2 a - V 4  a~+3ab)/3b. 
The L M cu rves  ex is t  in a nonuniformly magnet ized  liquid for values  of the magnet ic  pe rmeab i l i t y  which 

differ  as  l i t t le  as des i red  f r o m  unity, and they d e g e n e r a t e  into the points L A only in un i fo rmly  magnet ized 
l iquids.  We note that  the d i ag ram s  in Fig.  3 a r e  s i m i l a r  to the d i ag rams  for slow magnetosonic  waves in m a g -  
ne tohydrodynamics .  The d i ag ram s  given in Fig. 4 have  no analogy in i so t ropic  magne tohydrodynamies .  

F i g u r e s  3 and4 e o r r e s p o n d  to c a s e s  in which the dependences i l lus t ra ted  in F igs .  i and 2 occur  between the 
ve loc i t i e s  of the discont inui t ies .  

3. We will d i scuss  two-d imens iona l  s t e a d y - s t a t e  motions of an ideal conducting magnet ized liquid with 
v z = 0 and B z = 0. In this c a s e  the c h a r a c t e r i s t i c  su r faces  of the s y s t e m  of equations (1.2) a r e  cy l indr ica l  s u r -  
faces  whose g e n e r a t r i c e s  a r e  pa ra l l e l  to the z ax is .  Only magnetosonic  and entropic  c h a r a c t e r i s t i c s  a r e  p o s s i -  
ble  in two-d imens iona l  motions of the liquid. These  c h a r a c t e r i s t i c s  coincide with the c u r r e n t  l ines .  For  steady- 
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Taking this into account ,  we obtain f r o m  (1.14) an equation which de te rmines  the p o s s i -  s t a t e  motions 0 = --v n. 
ble  c h a r a c t e r i s t i c  d i rec t ions  in the (x, y) plane:  

(y') '  [Q~ - q~ (R  1 + q~Rz) ] --  2 (y,)a [Q~Qu :-  q~q, (R,  -+ 2q~R2) ] 

-t- (Y')' [ Q' - -  R~ - -  6q~q~R~] --  2y' [ QxQg - qxqy ( R ~ + 2q~R2) ] (3.1) 

wher e 
yt dy �9 = - ~ ,  Q = v/A; q = A/A; A=B/V4gp~ ;Q~- - -QI - I -Q~ ;  

R ,  = + + IX.B); = - -  + 

In the genera1 ca se  Eq. (3.1) de t e rmines  ei ther  four or two cha rac t e r i s t i c  d i rect ions  a t  the flow point r t  
depending upon the magni tude of the vec to r  v. We cons t ruc t  the L M curves  in order  to de te rmine  the number  
and di rec t ions  of the c h a r a c t e r i s t i c s  f r o m  the flow p a r a m e t e r s  a t  the point r .  Then one can show s i m i l a r l y  to 
Ref.  9 that  the d i rec t ions  of the c h a r a c t e r i s t i c s  a t  this point coincide with the di rect ions  of the tangents drawn 
to the L M curves  f r o m  the point - v ( r ) .  It  follows f r o m  this that  ff the roots  of the vec to r  - v ( r )  fall  into the 
reg ions  II bounded by the curv i l inea r  t r iangles  in Fig. 3 and 4, then four r e a l  c h a r a c t e r i s t i c  direct ions exis t  a t  
the flow point r .  If the end of the vec to r  - v ( r )  falls into the regions  I t then we only have two r e a l  c h a r a c t e r -  
is t ics .  

There  a r e  no c h a r a c t e r i s t i c s  in reg ion  II for the flow of a liquid in a perpendicular  magnet ic  field, and 
we have two c h a r a c t e r i s t i c s  in region I. If the vec to r s  v and B a r e  pa ra l l e l ,  then two r e a l  c h a r a c t e r i s t i c s  
bes ides  the c u r r e n t  l ines exis t  in region II, and there  a r e  no r e a l  magnetosonic  c h a r a c t e r i s t i c s  in reg ion  I. 
The condition for  the ex is tence  of c h a r a c t e r i s t i c s  is descr ibed  in the fo rm 

[~' + Nix2i:t~ T s m S  2 ~ v ' /mB'  ~ IX2 .+. IX~B (0~ < 02A) 
or 

~' + IXnB < v ' lmB'  < Ix' + N ~ '  IX~ TsmB '  (Oh > O~A) 

for  the flow of a liquid along the fo rce  l ines of the magnet ic  field. 

4. The p r e s e n c e  of r ea l  magnetosonic  c h a r a c t e r i s t i c s  r e su l t s  in s ignif icant  deviations in the motion of an 
i ncompres s ib l e  nonuniformly magnet ized liquid in c o m p a r i s o n  with the flow of an e l ec t r i ca l ly  conducting liquid, 
for which the magnet ic  pe rmeab i l i t y  is a s s umed  to be constant .  

We will d i scuss  one-d imens iona l  s imple  waves ,  which a r e  a pa r t i cu la r  ca se  of t r a n s v e r s e  waves ,  which 
w e r e  invest igated in Ref. 11. 

Fo r  an a r b i t r a r y  magnet iza t ion  law ~ = #(p, T, H) one can de r ive  f r o m  the s y s t e m  (1.2) the equations of 
s im p le  waves [12] in the f o r m  

dT dug _ 
dB-~y = - -  NIXIXTTsmBg, ~ -- - -  OIBx, (4.1) 

Bx ---- const, v: = const, B: ----: 0, vz ----- 0, 

where  0 is the ve loc i ty  of the f ron t  of a s imp le  wave defined by Eq. (1.14), in which it  is n e c e s s a r y  to se t  

Bn = Bx. 

Since the magnet iza t ion  for a pa ramagne t i c  liquid d e c r e a s e s  as the t e m p e r a t u r e  i nc reases  (UT<0) , then 
the t e m p e r a t u r e  i nc rea se s  monotonical ly  in magnetosonic  s imp le  waves ,  as follows f rom (4.1), and, onthe con-  
t r a r y ,  the veloci ty  d e c r e a s e s  monotonical ly  as the magnet ic  induction i nc r ea se s .  

The equation 
x - -  (v x -b O(Bu))t ---- F(By) (4.2) 

de t e rmines  a f t e r  in tegra t ion of the s y s t e m  (4.1) the dependence By(X, t) in a s imp le  wave propagat ing  in the 
pos i t ive  d i rec t ion  of the x axis  accord ing  to a specif ied initial magnet ic  induction dis t r ibut ion:  By = Y-l(x). 

We obtain f r o m  (2.1) in weak magnet ic  fields (~<<1) 

~ - - I  _ t t c - - t  T O 

Ix a T 

for  an e l ec t r i ca l l y  conducting p a r a m a g n e t i c  liquid magnet ized acco rd ing  to LangevinTs law. Taking the equation 
of s ta te  for the liquid in the f o r m  [4] S = Cp In T + c o n s t  (Cp is the specif ic  heat) and neglect ing t e r m s  in (4.1) of 
the order  of (P0-  1) 2 and higher ,  we obtain a f te r  in tegrat ion 
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r' - r .  ~ = ( . 0  - i) ro B'~- B'~________~ o 
ep 4~p ' 

B . -  By o (~o-  t ) (By-  B~o ) (4.3) 
v v  - v~o = - V ~  + - 2 " V ~ p  " 

With ~0 = 1 Eqs.  (4.3) d e t e r m i n e  the va r ia t ion  of  the va r i ab l e s  in an Alfv6n s imple  wave. 

In s t rong  magnet ic  fields (~>>1. a s ta te  of sa tu ra t ion  of the magnetization) the magnet iza t ion M is con-  
stant~ so t h a t / ~ -  1 = 47rM/H. Then we obtain f r o m  (4.1) 

d% " I ( B"-- 4uMB~ ~11~ (4.4) 
"dB ~ .  ~ - :  ~ .1 , T = cons,. 

Res t r i c t i ng  ourse lves  to the values  ~ - 11<<1, we have  f r o m  (4.4) 

By 2~M u ~ M~( 3 B~ 3 B~ a r e t g ~ -  x -~ 0 +eonst .  

Equations (4.1) can be invest igated in the e a s e  of an a r b i t r a r y  magnet iza t ion  law/~ = #(p, H). Then the 
t e m p e r a t u r e  in a s imp le  wave is not a l t e red ,  and the dependence of the t r a n s v e r s e  component  of the ve loc i ty  on 
the induction is de te rmined  by the second of Eqs.  (4.1), whereby  

B x Ix~B -~- IXHB~ 

Since 

0 W = - ~ - p :  ( .  + . . u )  B ( . . n  + . : ~ ) ~  ' 

i t  follows f r o m  Eqs.  (2~ that  dO/dBy> 0 in a pa ramagne t i c  liquid and dO~]By < 0 in a diamagnet ic  liquid for 
waves propaga t ing  in the pos i t ive  d i rec t ion  of the x axis .  

The in tegra l  cu rves  ~rpvy(Bv) in the (By, ~Vy) plane in t e r sec t  the (~-vy) axis a t  a constant  angle - a rc"an  
(1/~-~p-~) and d e c r e a s e  monotonic~ally as By i n c r e a s e s .  In a d iamagnet ic  liqu'id these  curves  a r e  convex down- 
ward ,  and in a paramagnet i& liquid, upward.  

It  follows f r o m  (4.5) that  the prof i le  of a s imple  magnetosonic  wave is deformed with the pa s sag e  of t ime.  

Different ia t ing (4.2) with r e s p e c t  to x with t constant  and using the l a s t  of Eqs.  (1.2), we obtain 

_ tdO/dBy -~- dF/dBy dBv = t.. 
o (By) et 

F r o m  this we obtain that  on the sec t ions  of the prof i le  of a s imp le  wave in a d iamagnet ic  liquid where  m a g -  
net izat ion occur red  (dF/dBy<0) a t  the initial ins tant  of t ime,  it is maintained a t  subsequent  t imes .  In the de -  
magnet iza t ion  sec t ion  (dF/dBy> 0) demagnet iza t ion  occurs  up until the t ime  

t 1 = rain [ -  dF/dBy ] 
' d o / d B T J "  

At t ime  t = tl an  inflection point is fo rmed  on the demagnet iza t ion  sect ion of the prof i le  of a s imple  wave [10] : 

( o z )  _ 0  ' [o 'x  ~ _ 0  (4.6) 
"~v , ~ O B~ ) t -- ' 

which indicates the onse t  of a demagnet iza t ion  shock wave. 

The s y s t e m  of equations (4.6) s e r v e s  to de te rmine  the t ime  and p lace  of fo rmat ion  of the shock wave .  

S imi la r ly ,  i t  has been shown that  the shock waves which a r i s e  in a pa ramagne t i c  liquid upon deformat ion  
of the prof i le  of a s i m p l e  wave a r e  magnet iza t ion  waves ,  in con t r a s t  to Alfv6n waves ,  these  shock waves of 
weak intensi ty  have  a t ime- independen t  s t r u c t u r e  [13]. 

The author  e x p r e s s e s  his grat i tude to I. E.  Ta rapov  for his constant  a t tent ion to this r e s e a r c h .  
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MAGNETOHYDRODYNAMICS OF HEAVY FLUIDS 

R. Kh. Zeitunyan UDC 538.4 

Four dimensionless parameters appear in the equations in connection with the discussion of the time- 

independent flow of an ideal compressible rotating plasma in a gravitational field: the Froude Fr, Rossby Ro, 

Mach Mo, and Alfv~n A 0 numbers. Here it is assumed that A 0 and M 0 are simultaneously very small and satisfy 
the similarity relationship A~/kVI 0 = Vo, where Yo = o(1) is a constant. First the case is analyzed in which Fr~0 

and Ao2/Fr 2 = ko, where A 0 = o(1) is a constant; the classical approximation of static equilibrium is obtained. If 
one notes that Fr 2 = 7M2/flo,where tic is the ratio of characteristic lengths, then it is necessary to discuss two 
cases. The first case corresponds to rio = o(1) , and a limiting system of equations is derived which permits 

studying atmospheric motions near the planets of the solar system, for which the characteristic angular rota- 
tional velocity is not very high (A~/Ro<<I). The second case corresponds to flo -~ 0 and flo/Mo = #0, where ~0 = 
o(1) is a new constant; it is possible to obtain a limiting system of equations which is suitable for analysis of 
the development of sunspots, where the magnetic and convective effects are closely linked. 

i. I n t r o d u c t i o n  

We will assume that only gravitational and electromagnetic forces are  acting on the "fluid medium' ,  
which is treated as an ideal plasma (see [1] in connection with the definition of an ideal plasma). The equations 
which describe a nonsteady adiabatic flow of an infinitely conductive plasma rotating with angular velocity 
when viscosity and thermal conductivity are  neglected have the form (the magnetic permeabili ty p is assumed 
to be constant) : 

p{Dv/Dt + 2[~}.v]} + VP + pgea = (1/~)[rotB.Bl; 
Op/at + div(pv) = 0; 

div B ----- 0; 

DT "f-- i T Dp -~-0; 
-D'F" ? p Dt 

OB/Ot -I- rot [B.v] = O. 

The plasma is treated as an ideal gas with constant specific heats Cp and c V (7 = Cp/CV) ; therefore 

(1.1) 

(1.2) 

(1.3) 

(I .4) 

(1.5) 
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